
 

The OIE Validation Recommendations provide detailed information and examples in support of the 

OIE Validation Standard that is published as Chapter 1.1.6 of the Terrestrial Manual, or Chapter 

1.1.2 of the Aquatic Manual. The Term “OIE Validation Standard” in this chapter should be taken as 

referring to those chapters.  

The choice of statistical methods for analysis of test validation data from laboratory experiments 

and from evaluation of field-based samples depends on considerations such as the experimental 

design and sample selection (source, number of samples, number of replicates of tests, etc.). 

Specific guidance about the “best approach” should be made in consultation with a statistician and 

should be done during the design phase before validation studies commence. 

For brevity, this annex considers commonly-used 

approaches for validation of a candidate test and 

hence, does not consider all statistical methods 

that might be used in practice. Methods are 

described to estimate the precision of an assay 

when repeated multiple times (repeatability and 

reproducibility), analytical characteristics 

(analytical sensitivity and specificity) and 

diagnostic characteristics (e.g. diagnostic 

sensitivity [DSe] and specificity [DSp], and area 

under the receiver-operating characteristic curve 

of an assay) used to detect an analyte in 

individual animals. Similar principles apply when 

tests are used to detect the same analyte in 

naturally or artificially-created sample pools from 

animals in aggregates (e.g. herds or flocks). In this case, the epidemiological unit is the aggregate 

rather than individual animals. 

Statistical methods differ depending on whether a single or multiple tests are evaluated, their scales of 

measurement (binary, ordinal, or continuous), whether independent or dependent (paired) samples 

are used, and whether there is a perfectly accurate reference standard (often termed a gold standard) 

for comparison (Wilks, 2001). Flow charts to guide selection of statistical methods for evaluation of 

diagnostic accuracy measures such as sensitivity and specificity are in Figures 1 and 2.  

The adequacy of the design of the study and statistical analysis may not always be reflected in the 

quality of reporting in scientific publications and hence, test developers and evaluators are 

encouraged to follow the STARD (Standards for Reporting of Diagnostic Accuracy) checklist 

(Bossuyt et al., 2003) to ensure complete reporting of all relevant information in validation studies of 

infectious diseases in animals.  

For guidance on analysis of measurement uncertainty data and for data for methods comparison 

studies refer to Chapters 3.6.4 and 3.6.8, respectively. 

Definitions of scales of measurement: 

Binary (dichotomous): Either positive or negative 
because that is how the test result is presented, or 
positive/negative at a selected threshold (cut-off) value 
when results are measured on an ordinal or continuous 
scale. 

Ordinal: Measured on a scale with discrete values where 
higher values typically indicate more analyte, e.g. serum 
virus neutralisation titres. 

Continuous: An infinite number of measured values are 
theoretically possible, depending on the measurement 
system, e.g. optical density or per cent positive values in 
an enzyme-linked immunosorbent assay, and cycle 
threshold values from real-time polymerase chain reaction 
assays that are lower than the maximum number of 
cycles that are run in the assay. 



Abbreviations: DSe = diagnostic sensitivity; DSp = diagnostic specificity; ROC = receiver operating characteristic;  
CI = confidence interval; PI = probability interval. 

 

Abbreviation: AUC = area under the receiver operating characteristic curve

 

Yes No 

Perfect reference standard 

Single binary candidate test Single continuous candidate test 

DSe and DSp (95% exact CI) DSe and DSp (95% exact CI) and 
Area under ROC curve (95% CI) 

Binary candidate and reference test 

DSe and DSp (95% CI or PI) by 
latent class methods 

DSe and DSp (95% exact CI) 
for relevant subpopulations 

DSe and DSp (95% exact CI) 
for relevant subpopulations 

Difference in AUC (95% CI) 

Comparison of test performance characteristics 

Paired design (dependent results) Unpaired design (independent results) 

Binary candidate tests 

Pearson’s  
chi-square test 

95% confidence 
interval for difference 

Binary candidate tests 

McNemar’s  
chi-square test  

95% confidence 
interval for difference 

Ordinal or continuous candidate tests 



An assessment of within-laboratory repeatability of an assay (often termed precision when the measurement is on 

a continuous scale) requires that a minimum of three samples having analyte concentrations within the operating 
range of the assay are tested in replicate by a single operator using a single test-kit lot or batch. Typically these 
runs will be on the same day but separate days are also possible. Use of three or four replicates of a sample 
rather than two is encouraged because it better captures the inherent variability in within-run assay results. 
Because of cost considerations, use of more than two replicates may not be feasible for all assay types (e.g. 
nucleic-acid detection). As described in the OIE Validation Standard, between-run variation can be evaluated in 
multiple runs involving two or more operators on multiple days. The following two sections describe approaches to 
analysis of continuous and binary data for assay repeatability.  

For continuous outcomes, the simplest approach is to estimate 
the standard deviation (SD) of replicates of a set of samples 
representing the operating range of the assay. These results 
initially should be evaluated in a scatter plot or diagram of the 
mean of the replicates plotted against the SD. For assays, 
where the SD is proportional to the mean, the within-sample 
coefficient of variation (CV) is often calculated. CV is often used even when proportionality doesn’t 
exist. In this case, the CV should be reported for levels of the target analyte (e.g. low, moderate and 
high). This is necessary because it is a common finding that CV is often larger when the concentration 
of target analyte is low. In general, an estimate of uncertainty in the CV values (e.g. 95% confidence 
interval [CI]) should also be calculated. Where the CV values are fairly constant over the range of test 
values, this can be done using the results of all samples. Where CV differs according to analyte 
concentration, separate 95% CI should be calculated for each analyte category based on the number 
of samples tested at each level. Methods for CI calculation for CV and the difference in two CV for 
normal data are described in Donner & Zou (2012).  

If the experimental design includes evaluation of multiple factors such as different operators and run 
days, other approaches such as variance component models (mixed models) may be needed should 
the goal be to decompose the variation into the sum of several components that can be readily 
interpreted. Variance components models can also be used for reproducibility data (see Section 2). 

In general, quantitative results should be used for evaluation of assay precision when data are 
available in that form, even though results might be dichtomotised for reporting purposes. For 
inherently binary tests which yield positive or negative results, the kappa statistic can be used to 
quantify the agreement of test results beyond chance. Kappa ranges from 0 (no agreement beyond 
chance) to 1 (perfect agreement beyond chance) but there is much conjecture about how kappa values 
should be interpreted (Fleiss et al., 2003; Landis & Koch 1977). Better agreement is typically expected 
when test results are well away from the cut-off points and hence, some samples with 
intermediate/suspicious values should be tested to avoid overly optimistic assessments of agreement. 
A weighted version of kappa for ordinal results (e.g. negative, suspicious, and positive) can be used to 
recognise that a large discrepancy (e.g. two category difference) is more serious than a smaller 
discrepancy (e.g. one category difference). Ninety-five per cent CI should be reported for unweighted 
or weighted estimates of kappa (Fleiss et al., 2003). 

Example 1: Kappa calculation based on repeated test results classified as positive or negative 

Test result Positive Negative 

Positive 90 5 

Negative 10 95 

 100 100 

Kappa = 0.85 (95% CI = 0.78 to 0.92) 

  

CV = 
SD of replicates 
Mean of replicates 

where: CV = Coefficient of variation 
SD = Standard deviation 



Example 2: Kappa calculation based on repeated test results classified into three categories 
(positive, suspicious, or negative) 

Test result Positive Suspicious Negative

Positive 80 10 10 

Suspicious 15 75 10 

Negative 5 15 80 

100 100 100 

Kappa = 0.68 (95% CI = 0.61 to 0.75). Weighted kappa = 0.70. (95% CI = 0.61 to 0.79) 

Assay precision will vary according to routine implementation, e.g. different operators, different test sites, using 
different kit lots, or on different days. Most commonly, the term reproducibility is applied to assessment of 
precision of the selected assay in multiple laboratories. Factors held constant should be described to allow 
interpretation of results in context to the actual testing situation. Reproducibility studies can be done 
independently of or in association with repeatability studies but should be done in a blinded fashion. As suggested 
in the OIE Validation Standard, at least three laboratories should test a minimum of 20 samples with identical 
aliquots going to each laboratory. 

Statistical methods for analysis of studies of assay 
reproducibility among laboratories are similar to those used 
for assessment of within-laboratory repeatability. However, as 
part of an among laboratory study, it might be considered 
important to assess and rank variability in test results from 
multiple sources (often termed a class). For example, if a 
study was designed to test an assay in three laboratories 
each using two highly-trained technicians and running the 
samples in duplicate on two kit lots, each test sample would be tested 24 times. The selected factors (laboratory, 
technician, kit lot, replicate result) can be considered to be fixed or random depending on how they are selected 
and whether they are representative of the target population. For this study design, variance components can be 
estimated for each class (example is Dargatz et al., 2004) and the intraclass (intracluster) correlation coefficient 
(ICC) can be estimated as a measure of the similarity of sample results (Bartlett & Frost, 2008). 

After an assay has been validated for use in a controlled laboratory environment, it may be considered 
for use in a very different environment (such as a pen-side application). Because of the more extreme 
changes, for example severe temperature fluctuations which often occur at pen-side, it would be 
expected that the two tests might behave very differently in their different environments. In fact, rather 
than random measurement error which applies to the assessment of within or among laboratory 
measurement error, it is anticipated that the values in such a study likely would be interpreted as a 
systematic measurement error, which would be the case if the values provide an over- or under-
estimate of the true value. For the example of a test run on split samples pen-side and in a laboratory, 
the mean of the differences between the pen-side value and the within laboratory value (true value) for 
the same sample should be reported with a 95% CI. If the 95% CI excludes zero, there is evidence of 
systematic deviation of test results when used pen-side compared within the laboratory. When such a 
systematic deviation in test results occurs, the pen-side test results are not comparable with those from 
the laboratory-based validated assay. To validate the pen-side assay, either it is subjected to a 
“technical modification” that is then evaluated in a methods comparison study (see Chapter 3.6.8) or a 
full re-validation of the pen-side application is required.  

Similar approaches can be used to assess method changes within a laboratory to determine whether 
there is systematic or random variation in the results. 

Example: The following unpublished data were obtained comparing two extraction methods (old and 
new on split samples) on cycle threshold (CT) values for a real-time quantitative polymerase chain 
reaction (qPCR) for bluetongue. The data (n=10) represent means of sample duplicates. 

Old method: 25.6, 24.5, 21.3, 26.8, 25.2, 30.2, 31.2, 32.8, 31.8, 34.9 

New method: 23.1, 21.0, 18.2, 25.2, 24.7, 28.6, 30.4, 32.2, 31.3, 34.7 

Intraclass correlation coefficient represents the 
similarity or correlation of any two measurements 
made on the same sample. The ICC takes values 
between 0 and 1 with values closes to 1 indicating 
minimal measurement error. Conversely, values 
close to 0 indicate a large amount of measurement 
error. 



The mean difference between the two methods (old minus new) was –1.49 (95% CI = –2.33 to –0.64) 
with a two-tailed probability of p=0.003. Because the 95% CI excludes zero, this indicates a 
systematically lower CT value when the new extraction method is used. A Bland–Altman plot (Bland & 
Altman, 1999; Fig. 3) can be used to graphically depict how the difference changes as a function of the 
mean value of the old and new method. For these data, the difference appears to decrease for higher 
CT values but the sample size is small. 

 

Analytical sensitivity can be estimated using a dilution-to-extinction (DTE) experiment in which serial dilutions of a 
known quantified amount of target analyte are made into the appropriate sample matrix. This known quantified 
amount might be from an in-house or national/international reference standard or a field sample whose analyte 
concentration has been determined. Parallel runs of a comparison standard can be done but are not essential, 
unless the study is one in which a minor change in a validated assay is being compared with the original validated 
assay. The DTE approach can be used if the analyte is measured qualitatively or quantitatively. In the latter case, 
the test result is reclassified as positive or negative.  

The approach to analysis of LOD data depends on the experimental design. For example, suppose that a study 

was done in which 108 colony-forming units (CFU) of a bacterium were spiked into 10 g faeces to achieve a 

concentration of 107 CFU/g. This sample was then diluted in tenfold serial dilutions to 101 CFU/g. The experiment 

was repeated three times. If all replicates at 103 CFU/g were detected but none at 102 CFU/g, the LOD could be 

conservatively estimated as 103 CFU/g. If a precise estimate of the LOD were needed, a second stage experiment 
could be designed to determine the LOD with a greater certainty using a series of finer dilutions, e.g. twofold, 
encompassing the interval between 100% detection and 0% detection identified in the first experiment. The LOD 
endpoint often is chosen to be 95%; in an experiment with 20 replicates, this corresponds to the dilution where 
19 replicates for analyte were positive. The important point is that the chosen probability point for the LOD 
(whether 95%. 50% of another value) should be specified and used consistently if results of multiple tests are 
being compared. The LOD can be estimated using the Spearman-Kärber non-parametric approach, or by logistic 
regression or probit analysis. The greater the number of replicates for each dilution, the more precise the estimate 
of LOD.  

Example: Guthrie et al. (2013) made a twofold dilution series of an AHSV-positive horse blood (10–3 dilution), 

which covered the non-linear range of the assay. The extraction was repeated 25 times and samples were tested 
by AHSV real-time qPCR. The qPCR results for the 15 dilution points were used in a probit analysis to calculate 
the 95% LOD (i.e. input concentration giving a positive real-time qPCR result in 95% of the replicates (Burns & 

Valdivia, 2008). The 95% LOD was estimated to be at a dilution of 3.02 × 10–6, as shown in Figure 4, and 
corresponded to a quantification cycle of 35.71 in the qPCR. CI for the estimate were not reported. 
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Analytical specificity can be described in at least three distinctive ways: selectivity, exclusivity (synonym: cross-
reaction profile), and inclusivity (as described in the OIE Validation Standard). The latter two measures should be 
reported on a per lineage, isolate, species or genus basis, as appropriate for the target analyte and the intended 
purpose of the test. For screening tests, a broader and more inclusive specificity is required than for a 
confirmatory test that may distinguish between isolates that, for instance, vary in pathogenicity. Because the 
choice of related organisms is subjective and often dependent on the types and numbers of samples, the 
exclusivity result should be reported qualitatively, e.g. the percentage of related agents that cross-reacted in the 
assay with a listing of potential cross-reacting agents that were evaluated. Similarly, inclusivity is reported as a 
percentage of the serovars, strains, genera and species detected by the assay, as appropriate for the target 
analyte.  

Diagnostic performance of an assay is mostly commonly measured as sensitivity (DSe) or specificity (DSp) or a 
combined measure of DSe and DSp such as the likelihood ratio of a positive of negative result. Likelihood ratios 
for intervals of test results can also be calculated when it is important to retain information on the magnitude of the 
test result rather than use it in a dichotomised form. For more information on use and calculation of likelihood 
ratios, see Gardner & Greiner (2006) and Gardner et al. (2010). The latter paper includes an example for porcine 
toxoplasmosis with CI calculations by two methods. 

DSe and DSp can be estimated when the reference or comparison method is perfectly sensitive and specific or 
when the reference standard is imperfect. In general, most ante-mortem reference standards in common use in 
diagnostic laboratories are imperfect and hence, necropsy with testing of multiple tissues by ancillary tests such 
as culture and/or histopathology often is necessary if the results of the reference standard are to be considered to 
be the truth. For most test validation studies for animal diseases, this latter option is not feasible or cost-effective 
except for a limited number of samples.  

The candidate test may yield results on binary (dichotomous), 
ordinal (e.g. titre) or continuous scales. For the latter two 
scales, results need to be dichotomised before DSe and DSp 
can be calculated, i.e. a cut-off (threshold) needs to be 
established. Exact binomial 95% CI are recommended for 
DSe and DSp (Greiner & Gardner, 2000) because the normal 
approximation may not yield appropriate CI when parameter 
estimates are close to 1.  

  

Statistical uncertainty about diagnostic 
performance parameters, e.g. DSe and 
DSp, should be presented as 
confidence intervals (CI). Typically, a 
95% CI is used and its width (precision 
of the estimated value) depends 
strongly on the sample size used for 
parameter estimation. Exact CI are 
preferred to normal approximations 
because they avoid upper limits that 
exceed 100%. 



Example: indirect enzyme-linked immunosorbent assay (I-ELISA) 

  Number of animals  

   Known antibody positive (369) Known antibody negative (198) 

Test 
results 

Positive 287 
  

1 
TP FP 

Negative 82 
FN TN 

197 
  

  Diagnostic sensitivity* Diagnostic specificity* 

  TP/(TP + FN)  TN/(TN + FP) 

  77.8% (73.2 – 81.9%)* 99.5% (97.2 – 99.9%)* 

 

TP and FP = true positive and false positive, respectively 

TN and FN = true negative and false negative, respectively 

*95% exact binomial confidence limits for DSe and DSp  

When the reference standard is not applied to all positive and negative test results (partial verification), 
corrected estimates of DSe and DSp should be made as described in Greiner & Gardner (2000) to 
account for different sampling probabilities in the test-positive and test-negative groups. 

For assays yielding ordinal (e.g. titre values) or continuous results (e.g. ratios of test sample to positive 
control sample values in an ELISA), estimates of DSe and DSp should be complemented with 
estimates of the area under the receiver-operating characteristic (ROC) curve. ROC analysis provides 
a cut-off-independent approach for evaluation of the global accuracy of a test where results are 
measured as ordinal or continuous values. The area under the ROC curve provides a single numerical 
estimate of overall accuracy ranging from 0.5 (useless test) to 1 (perfect test). The main justification for 
ROC analysis is that cut-off values for test interpretation may change depending on the purpose of 
testing (e.g. screening versus confirmation) and with the prevalence of infection, the costs of test 
errors, and the availability of other tests. Detailed descriptions of ROC analysis are presented 
elsewhere (Gardner & Greiner, 2006; Greiner et al., 2000; Zweig & Campbell, 1993). When multiple 
ordinal or continuous tests are compared, the difference in the area under the curve with a 95% CI 
should be calculated. Methods for calculating differences vary for independent and dependent samples 
and are implemented in many statistical programs (Gardner & Greiner, 2006). Examples of a dot 
diagram for results of a single ELISA and ROC curves for two ELISAs are shown in Figures 5 and 6.  
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In the absence of a perfect reference standard, it is also possible to estimate the AUC using latent 
class (LC) models. For example, LC models can be applied to normally distributed data from two 
dependent tests (see for example Choi et al., 2003) and using semiparametric approaches (Branscum 
et al., 2008). LC models for continuous data including censored or truncated data that occur with real-

time PCR assays are not described in this validation guideline because of their complexity. However, 
LC models for binary test results and an example application are described in Section 5.3. 

Often, investigators might wish to compare DSe values in subpopulations of infected animals, e.g. 
clinically versus subclinically infected, or DSp values in different geographical areas. Since these are 
independent samples, the comparisons can be made statistically by Pearson’s chi-square test for 
homogeneity. Alternately, separate 95% CI and a 95% CI for a difference in two proportions can be 
calculated. When the DSe (or DSp) of two tests are compared on the same set of infected (or non-
infected) samples in a paired design, the test results are no longer independent. Statistical methods 
such as McNemar’s chi-square can be used to test the hypothesis of equal sensitivities (specificities) 
when testing is done on the same samples. 

Example: Five antibody detection tests were evaluated for diagnosis of bovine paratuberculosis in dairy 
cows in known infected and non-infected herds, as determined by faecal culture results and herd 
history. The following data tables were generated based on the original data before subsequent 
publication in Collins et al. (2005). In the publication, one herd was removed from the analysis. The 
example is used for demonstration purposes to show the tabular layout for calculation of DSe and DSp 
and statistical evaluation. 

 
Infected 

   
Non-infected   

 

T2+ T2– 

  

T2+ T2– 

 T1+ 124 74 198 T1+ 3 27 30 

T1– 8 243 251 T1– 16 366 382 

 
132 317 449 

 
19 393 412 

        
Sensitivity of T1 = 198/449 = 44.1% Specificity of T1 = 382/412 = 92.7% 

Sensitivity of T2 =132/449 = 29.4% Specificity of T2 = 393/412 = 95.4% 

Sensitivities differed significantly (p<0.0001), but specificities did not (p= 0.126) based on a two-tailed 
McNemar’s chi-square test. Sensitivity and specificity covariances (see Gardner et al., 2000 for details) 
can also be calculated to indicate whether the tests are conditionally independent or dependent, given 
infection status. For these data, the sensitivity covariance (calculated using the infected table on the 
left) was 0.147 (p < 0.0001 by Pearson’s chi-square) indicating strong dependence of the two tests 
when used in infected animals. The specificity covariance (calculated using the non-infected table on 
the right) was 0.004 (p = 0.152 by Pearson’s chi-square) indicating no significant dependence.  

An additional example based on porcine toxoplasmosis data is presented in Gardner et al. (2010).  

 



Advances in statistical methodology, specifically the development of latent class (sometimes termed 
“no-gold-standard”) models, now allow investigators to liberate themselves from the restrictive 
assumption of a perfect reference test and estimate the accuracy of the candidate test(s) and the 
reference standard with the same data (Enoe et al., 2000; Hui & Walter, 1980).  

Latent class (LC) models, either using maximum likelihood or Bayesian methods, can be used for 
estimation of DSe and DSp when joint test results are available from multiple tests applied to animals in 
multiple populations (e.g. herds or geographical areas). Not all LC models for estimation of DSe and 
DSp will be statistically identifiable for inference. A model is identifiable if it is theoretically possible to 
determine the true value of model parameters after obtaining an infinite number of observations from it. 
In essence, this equates to having a unique set of values for the parameters of interest (DSe, DSp). 
Bayesian approaches are especially suited to situations where prior information is available about DSe 
and/or DSp and when the estimation problem is not identifiable (Branscum et al., 2005). 

The simplest one-population LC model that is identifiable is when three conditionally independent are 
run on the same samples. The constraint of independence of three tests may be difficult to achieve in 
practice unless the target analyte differs among tests. Hence, a commonly used approach in animal 
health is to run two tests on all samples from animals in two populations because it is less costly and 
assumptions of conditional independence may be more reasonable. The two-test two-population model 
also requires the assumptions of constant sensitivity and specificity across the two populations, and 
distinct prevalences. The assumption about constant sensitivity may be difficult to verify and is unlikely 
to be correct if one population has clinically affected animals and the other population has subclinically 
affected animals because many published studies have shown that test sensitivity is greater in clinically 
affected animals. If one of the two populations is known to be pathogen-free (prevalence is zero) while 
the other population is known to have a non-zero prevalence, the former population can be used for 
estimation of DSp and this will facilitate estimation of DSe in the infected population. 

OIE-listed diseases where DSe and DSp have been estimated with Bayesian methods include ovine 
brucellosis (Praud et al., 2012), Q fever (Paul et al., 2013), trypanosomosis (Bronsvoort et al., 2010), 
bovine tuberculosis (Clegg et al., 2011), foot and mouth disease (Bronsvoort et al., 2006), African 
horse sickness (Guthrie et al., 2011) and infectious salmon anaemia virus (Caraguel et al., 2013). 

The WinBUGS software1 allows easy implementation 
of Markov-chain Monte Carlo methods for Bayesian 
estimation (Lunn et al., 2000) and simple maximum 
likelihood analyses can be done using a web-based 
interface (Poulliot et al., 2002). Prior information about 
model parameters used in the Bayesian analyses may 
affect the final estimates depending on the relative 
strength of evidence provided by the priors (level of 
prior uncertainty) and the data (uncertainty attributable 
to finite sample sizes). Therefore, the sources of prior 
information must be well documented in Bayesian 
analyses and it may be desirable to repeat the analysis using non-informative priors on all parameters 
when the model is identifiable.  

It is important to note that LC analysis cannot correct for biases inherent in poorly designed studies. 
The methods should be used carefully and include a thorough evaluation of underlying assumptions 
(e.g. conditional dependence, constant sensitivity and specificity across populations, and distinct 
prevalences), the effects of use of the selected prior distributions on posterior inferences as described 
in the previous paragraph, and convergence of Markov chains in a Bayesian analysis (Toft et al., 
2005).  

Example: Guthrie et al. (2013) estimated the DSe and DSp of a quantitative real-time PCR and 
conventional virus isolation (VI) for detection of African horse sickness (AHS) virus in whole blood 
samples using a two-test two-population Bayesian latent class model. Two populations of South African 
thoroughbred horses (503 AHS suspect cases and 503 healthy horses from the AHS virus controlled 
zone) were tested by PCR and VI. For the 503 suspect cases the joint test results were: PCR+VI+ 
(n=156). PCR+VI– (n=184), PCR–VI+ (n=0), and PCR–VI– (n=163). All 503 healthy horses were PCR–

VI–. Various models (conditional independence and conditional dependence) were fitted to the data 
and a second population of healthy horses was also included in some analyses.  

                                                           
1  Available at http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml 

Maximum likelihood – a method for 
estimation of the most likely values for the 
parameters of interest based on the value of 
likelihood function for the data. 

Bayesian methods – incorporate relevant 
prior information or knowledge about one or 
more tests in addition to the likelihood function 
for the data. With large sample size, maximum 
likelihood and Bayesian methods will yield 
similar inferences. 



Models were run in WinBUGS 1.4.3 (Lunn et al., 2000) with the first 5000 iterations discarded and the 

next 50,000 iterations used for posterior inferences (medians and 95% probability intervals for DSe and 
DSp. Model convergence was assessed by visual inspection of trace plots of iterated values and 
running multiple chains from dispersed initial values. The conditional independence model fitted with 
non-informative beta (1,1) priors on DSe and DSp of both tests yielded almost identical results to the 
model which used a highly informative beta (9999,1) prior for the DSp of VI. Estimated medians values 
and 95% probability intervals (sometimes termed credible intervals) in parentheses from the conditional 
independence model with non-informative priors were: 

PCR sensitivity = 0.996 (0.977–0.999) 

PCR specificity = 0.999 (0.993–1.0) 

VI sensitivity = 0.458 (0.404–0.51) 

VI specificity = 0.999 (0.998–1.0) 

The results indicated a twofold higher DSe of PCR compared with VI and comparable DSp of both 
tests. For a complete description of the modelling approach see Guthrie et al. (2013). 

If a Bayesian approach is used in WinBUGS to analyse the joint test data from multiple populations, the 
difference in sensitivities (specificities) can be readily estimated and the probability that the sensitivity 
(specificity) of one test exceeds the other can be estimated with the STEP function.  

Example: For the results of the Guthrie et al. (2013) data in Section 5.3, the 95% probability intervals 
(PI) for DSe did not overlap but there was marked overlap in the 95% PI for DSp. The corresponding 
probability values obtained from the STEP function were 1 and 0.24, respectively. These values 
indicate certainty that the DSe differ but the probability that the DSp differ is small (less than 0.5). 
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